Program	ne BS Computational Statistics	Course Code	CSTA-	Credit Hours	3		
Course T	D 1 1 1	and Data AnalyticsCourse Course 305Bayesian Analysis					
Course Introduction							
on evidence.	alysis and Application: Bayesian statisti Students learn Bayesian inference, pr schods, and Bayesian modeling for comp	ics offers a probabilis					
	Learn	ing Outcomes					
1 To intro 2 To dev	of this course, students will be all oduce students to the Bayesian ap elop a comprehensive understand ip students with the skills neces ns.	pproach and its fu ling of Bayesian p	orobability	and inference.	actical		
	Course Content		As	signments/Read	ings		
Week 1	Unit – I Concept of Probability: Introduction to probability theory and its applications Unit – II Basic probability concepts: sample space, events, probability axioms						
Week 2	probability axioms Unit – III Conditional Independence: Understanding conditional probability and conditional independence Unit – IV Applications of conditional independence in probability models and statistical inference						
Week 3 Unit – V Exchangeability, Bayes Theorem: Explanation of exchangeability in probability models Unit – VI Introduction to Bayes' theorem and its significance in Bayesian inference							
Week 4 Unit – VII Different Types of Prior and Their Uses: Overview of different types of prior distributions: conjugate priors, non-informative priors, informative priors Unit – VIII Understanding the role of priors in Bayesian inference and decision-making							

		1
	Unit – IX Information Decoder One Departmenter Madel (Dinemial	
	Inference Based on One-Parameter Model (Binomial	
Week 5	and Poisson):	
	Statistical inference for binomial Unit – X	
	Poisson distributions using Bayesian methods	
	Unit – XI	
	Estimation of parameters in one-parameter Bayesian	
Week 6	models Unit – XII	
	Hypothesis testing in one-parameter Bayesian models	
ļ	Unit – XIII	
	Inference Based on Two-Parameter Model	
	(Normal):	
	Bayesian inference for normal distribution	
Week 7	parameters: mean	
	Unit – XIV	
	Bayesian inference for normal distribution	
	parameters: variance	
	Unit – XV	
	Calculation of posterior distributions	
Week 8	Unit – XVI	
	Credible intervals in two-parameter models	
	Unit – XVII	
	Posterior Predictive Distributions:	
	Definition and interpretation of posterior predictive	
Week 9	distributions	
	Unit – XVIII	
	Applications of posterior predictive distributions in	
	model checking and validation	
	Unit – XIX	
	Introduction to MCMC Techniques (e.g.,	
	Metropolis-Hastings):	
Week 10	Overview of Markov Chain Monte Carlo (MCMC)	
	methods for Bayesian inference	
	Unit – XX	
	Introduction to the Metropolis-Hastings algorithm	
	and its implementation	
Week 11	Unit – XXI Cibbo Someling	
	Gibbs Sampling:	
	Understanding Gibbs sampling as a special case of MCMC for multivariate distributions	
	MCMC for multivariate distributions	
	Unit – XXII Applications of Cibbs compling in Payasian	
	Applications of Gibbs sampling in Bayesian	
	inference and posterior estimation	

	Unit – XXIII	
	Implementation and Use of MCMC Algorithms:	
	Practical implementation of MCMC algorithms	
Week 12	using R, Python, or other programming languages	
	Unit – XXIV	
	Using MCMC for parameter estimation, model	
	fitting, and Bayesian hypothesis testing	
	Unit – XXV	
	Hands-on Practice with MCMC Simulations:	
W 1 10	Guided exercises and simulations to practice MCMC	
Week 13	techniques	
	Unit – XXVI	
	Practice continued	
	Unit – XXVII	
	Hands-on experience with running MCMC	
Week 14	algorithms, diagnosing convergence, and analyzing	
week 14	results	
	Unit – XXVIII	
	Practice continued	
	Unit – XXIX	
	Advanced Topics in Bayesian Inference:	
	Exploration of advanced topics in Bayesian	
Week 15	inference based on student interest and instructor	
WEEK 15	expertise	
	Unit – XXX	
	Discussion of recent developments and applications	
	in Bayesian statistics	
	Unit – XXXI	
	Unit – XXXI Review and Applications:	
Week 16	Unit – XXXI Review and Applications: Recap of key concepts and techniques	
Week 16	Unit – XXXI Review and Applications: Recap of key concepts and techniques Unit – XXXII	
Week 16	Unit – XXXI Review and Applications: Recap of key concepts and techniques	
Week 16	Unit – XXXI Review and Applications: Recap of key concepts and techniques Unit – XXXII	

- 1. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). *Bayesian Data Analysis* (3rd ed.). Chapman and Hall/CRC.
- 2. McElreath, R. (2015). Statistical Rethinking: A Bayesian Course with Examples in R and Stan. CRC Press.

Suggested Readings:

- 1. Davidson-Pilon, C. (2015). Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference. Addison-Wesley Professional.
- 2. Martin, O. (2016). Bayesian Analysis with Python. Packt Publishing.
- 3. Lee, P. M. (2012). Bayesian Statistics: An Introduction. Wiley.

Teaching Learning Strategies

Class Lecture method, which includes seminars, discussions, assignments and projects. (Audio-visual tools are used where necessary)

Assignments: Types and Number with Calendar

According to the choice of respective teacher.

According to the choice of respective teacher.						
Assessment						
Sr. No.	Elements	Weightage	Details			
1.	Midterm Assessment	35%	It takes place at the mid-point of the semester.			
2.	Formative Assessment	25%	It is continuous assessment. It includes: Classroom participation, attendance, assignments, and presentations, homework, attitude and behavior, hands-on-activities, short tests, quizzes etc.			
3.	Final Assessment	40%	It takes place at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.			